红外测温仪工作原理及应用

2018-04-13 15:16:03 大云网  点击量: 评论 (0)
摘要:本文结合国内外红外技术的发展和应用,简绍了红外技术的基础理论,阐述了红外热像仪的工作原理、发展和分类。 1 概述  红外测温


  九十年代中期,美国FSI公司首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并将上述信息存储到机内的PC卡上,即完成全部操作,各种参数的设定可回到室内用软件进行修改和分析数据,最后直接得出检测报告,由于技术的改进和结构的改变,取代了复杂的机械扫描,仪器重量已小于二公斤,使用中如同手持摄像机一样,单手即可方便地操作。


  如今,红外热成像系统已经在电力、消防、石化以及医疗等领域得到了广泛的应用。红外热像仪在世界经济的发展中正发挥着举足轻重的作用。

 

  2.3热像仪分类

  红外热像仪一般分光机扫描成像系统和非扫描成像系统。光机扫描成像系统采用单元或多元(元数有8、10、16、23、48、55、60、120、180甚至更多)光电导或光伏红外探测器,用单元探测器时速度慢,主要是帧幅响应的时间不够快,多元阵列探测器可做成高速实时热像仪。非扫描成像的热像仪,如近几年推出的阵列式凝视成像的焦平面热像仪,属新一代的热成像装置,在性能上大大优于光机扫描式热像仪,有逐步取代光机扫描式热像仪的趋势。其关键技术是探测器由单片集成电路组成,被测目标的整个视野都聚焦在上面,并且图像更加清晰,使用更加方便,仪器非常小巧轻便,同时具有自动调焦图像冻结,连续放大,点温、线温、等温和语音注释图像等功能,仪器采用PC卡,存储容量可高达500幅图像。


  红外热电视是红外热像仪的一种。红外热电视是通过热释电摄像管(PEV)接受被测目标物体的表面红外辐射,并把目标内热辐射分布的不可见热图像转变成视频信号,因此,热释电摄像管是红外热电视的光键器件,它是一种实时成像,宽谱成像(对3~5μm及8~14μm有较好的频率响应)具有中等分辨率的热成像器件,主要由透镜、靶面和电子枪三部分组成。其技术功能是将被测目标的红外辐射线通过透镜聚焦成像到热释电摄像管,采用常温热电视探测器和电子束扫描及靶面成像技术来实现的。

      热像仪的主要参数有:

  2.3.1工作波段;工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。


  2.3.2探测器类型;探测器类型是指使用的一种红外器件。是采用单元或多元(元数8、10、16、23、48、55、60、120、180等)光电导或光伏红外探测器,其采用的元素有硫化铅(PbS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(HgCdTe)、碲锡铅(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(Si:X)等。


  2.3.3扫描制式;一般为我国标准电视制式,PAL制式。


  2.3.4显示方式;指屏幕显示是黑白显示还是伪彩显示。


  2.3.5温度测定范围;指测定温度的最低限与最高限的温度值的范围。


  2.3.6测温准确度;指红外热像仪测温的最大误差与仪器量程之比的百分数。


  2.3.7最大工作时间;红外热像仪允许连续的工作时间。

 

      3.红外测温   

 

  3.1红外测温仪器的种类

  红外测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功第一台红外测温仪,1990年以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT-1200D型、HCW-Ⅲ型、HCW-Ⅴ型;YHCW-9400型;WHD4015型(双瞄准,目标D40mm,可达15m)、WFHX330型(光学瞄准,目标D50mm,可达30m)。美国生产的PM-20、30、40、50、HAS-201测温仪;瑞典AGA公司TPT20、30、40、50等也有较广泛的应用。DL-500E可以应用于110~500kV变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,瑞典AGA-THV510、550、570。近期,国产红外热像仪在昆明研制成功,实现了国产化。

 

  3.2红外测温仪工作原理

  了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。


  一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 


  黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。


  物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。


  影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。
  当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。


  红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。


  3.3红外测温仪性能

  红外测温仪是通过接收目标物体发射、反射和传导的能量来测量其表面温度。测温仪内的探测元件将采集的能量信息输送到微处理器中进行处理,然后转换成温度读数显示。在带激光瞄准器的型号中,激光瞄准器只做瞄准使用。其性能说明如表1。
   测温范围  -32℃--400℃  显示分辩率   0.1℃(199.1℃时)
  精度  23℃时±1  工作环境温度范围  0--50℃
  重复性   23℃时±1  相对湿度   30℃时10—95
  响应时间  500ms   电源    9V
  响应光谱  7-18micron  尺寸     137×41×196mm
  最大值显示 Have   重量     270g
  发射率   0.95Preset  防水    根据消防部队要求特殊制作

      表1红外测温仪性能  

  为了获得精确的温度读数,测温仪与测试目标之间的距离必须在合适的范围之内,所谓“光点尺寸”(spotsize)就是测温仪测量点的面积。您距离目标越远,光点尺寸就越大。右图所示为距离与光点尺寸的比率,或称D:S。在激光瞄准器型测温仪上,激光点在目标中心的上方,有12mm(0.47英寸)的偏置距离。


  测量距离与光点尺寸
  在定测量距离时,应确保目标直径等于或大于受测的光点尺寸。右图所标示的“1号物体”(object1)与测量仪之间的距离正,因为目标比被测光点尺寸略大一些。而“2号物体”距离太远,因为目标小于受测的光点尺寸,即测温仪同在测量背景物体,从而降低了读数的精确性。

 

      4.红外测温仪正确选择  

  选择红外测温仪可分为3个方面:
  (1)性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、窗口、显示和输出、响应时间、保护附件等;
  (2)环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;
  (3)其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。

大云网官方微信售电那点事儿

责任编辑:电力交易小郭

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞