现代通信系统电源设计

2013-09-25 14:18:05 北极星电力软件网  点击量: 评论 (0)
通信设备使用的电源器件有很多种,从前端的功率因数校正(PFC)AC DC电源到后端的高效DC DC模块和负载点(POL)转换器,不一而足。从需要很高效率的中间总线转换器(IBC),到那些日趋细小轻巧的VoIP数字电话,

器的峰值电流仅为1A。要实现最高的效率,两路门极驱动器输出之间的时序延迟就甚为关键,而LM5025控制器就具备了这样的可编程功能。

对于输出电压较低的应用方面,就有必要使用同步整流器以实现较高的整体电源效率。有源复位方案适合使用同步整流器,这是因为同步整流器可以直接通过次级变压器自我驱动,如图2所示。



图3展示了LM5041级联式控制器和LM5100半桥驱动器组合而成的芯片组,用于设计双级级联式降压馈电转换器。该转换器包含一个高压降压前级稳压器,用于在推挽电源变压器级维持一个固定的电压,这个变压器级被用作“直流变压器”,类似前文所述的IBC。通过设置变压器匝数比,将预稳压电压降至最终的输出电压。目前生产的级联式转换器能进行紧密的线路稳压,其线路输入电压范围宽达4:1甚至更高。它还能提供优异的输出负载瞬时响应,同时消除了输出滤波器电感器和电流传感电阻器,这是降低成本和复杂性的另一个优点。它的输出电路具备回扫稳压器的简单性和其他优点。去掉输出滤波电感器,便缩短了加载阶跃变化的延迟,并且无需采用引起电压回路错误的电感器。推挽直流变压器持续在精确的50%占空比上驱动,从而产生连续不断的电流至输出端。这样做不但提高了隔离变压器核心的使用率,同时也降低了输出元件的应力和干扰,使级联拓扑结构非常适合于高输出功率的应用。

 

图4展示了推挽MOSFET漏极波形和降压级开关节点(Vsw)。当两个漏极均为低电平时,交迭时间便会显示出来。推挽级的工作切换频率是降压级的一半。


 

图5展示了双级多输出数字用户环路(DSL)的电源应用,它使用了由LM5030推挽控制器驱动的一个功率较低的多输出隔离变压器,加上LM5642双输出电流模式降压控制器。该电源提供了线路驱动器和放大器的两种模拟电压(典型值为±12V),以及数字ASIC所需的几种较低电压(+5V、+3.3V、+1.8V、+1.5V)。LM5030被用作推挽转换器的中心部件,把48V输入电压转换成±12V,同时提供电绝缘。LM5642控制器构成负载点同步降压转换器,接收来自中间总线轨的+12V电力,并产生用于xDSL卡电子器件的多路低压输出。高性能双输出LM5642降压控制器的每条通道只需要一对FET、一个小型输出电感器和输出电容器,以及几个电阻器和电容器,构成了高效率、低成本的IBA解决方案。

下面的表1列出了美国国家半导体公司的一些新型高压ABCD(模拟双极CMOS DMOS)技术系列和应用,它们具有充足的击穿电压,有利于简化通信电源转换器的设计。被称为ABCDXV1和ABCDXV2的两种新技术增强了N通道DMOS功率晶体管、高压PMOS器件和结隔离二极管的击穿电压,使它们能够承受高达100V的直流输入工作电压,以便满足通信电力系统标准中的瞬态电压规范。这两种新型平台(XV1和XV2)是基于现有的45V ABCD150技术平台,并分别提供80V和 100V击穿电压。

---利用美国国家半导体公司LM5000系列中的多种新型高压高性能电源管理芯片组,可以迅速组装通信用分布式电源总线架构和转换器拓扑结构。从这些产品中挑选用于电源设计的产品时,需要考虑的平衡因素包括输入电压范围、预期输出数量、整体系统的电源效率要求,以及允许的卡的尺寸和面积大小。现代的先进高压工艺技术促进了PWM控制器、开关稳压器和功率MOSFET门级驱动器的进步,现在这些元件可以被迅速组装,构成轻巧而高效的DC/DC电源模块。


大云网官方微信售电那点事儿

责任编辑:廖生珏

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞