500kV统一潮流控制器在苏州南部电网的工程应用

2018-06-22 16:45:00 《中国电力》杂志  点击量: 评论 (0)
报道了500 kV统一潮流控制器(unified power flow controller,UPFC)示范工程在苏州南部电网的应用情况,工程于2017年年底建成投产,建成后将成为世界上电压等级最高、容量最大的UPFC工程。

(4)控制保护系统。500 kV UPFC控制保护系统的难点主要有:换流器的多目标协调控制、换流器的平滑启动和停运控制、换流器低调制比运行控制、并联换流器在故障穿越控制和串联侧换流器的故障重启控制、系统调度和运行策略等。在南京西环网UPFC工程经验[14-16]的基础上进一步研究500 kV UPFC控制保护系统技术,针对500 kV UPFC的系统结构的特点以及系统的控制目标,可以得到控制保护装置的配置和上层的控制策略。

500kV统一潮流控制器在苏州南部电网的工程应用

2.4 UPFC工程投资成本

苏州南部500 kV UPFC示范工程建设规模如下。

(1)500 kV UPFC配电装置部分:采用3/2接线,500 kV出线7回(至同里变2回、梅里变2回、木渎变3回)。

(2)500 kV UPFC成套设备部分:建设换流器3台,容量3×250 MV˙A;配套建设500 kV联结变压器3台,容量3×300 MV˙A;500 kV断路器5台;±90 kV直流场设备。

(3)500 kV线路部分:同里变—木渎变双线、梅里变—木渎变双线的木渎变电站侧均改接至500 kV UPFC配电装置,新建线路长度约1 km。

(4)配套木渎变、梅里变等500 kV变电站间隔(保护)改造及光通信工程。

苏州南部500 kV UPFC工程投资估算如表1所示,由表1中数据可以看出,苏州南部500 kV UPFC工程总投资约为9.3亿元。

3 技术经济比较

与新增输电通道的方案相比,装设UPFC的方案在满足输电能力需求的前提下,其优势如下:(1)不增加短路电流,避免了系统短路电流越限的问题;(2)能够减少锦苏直流换相失败风险;(3)工程实施具备可行性;(4)投资上优势显著(较新增输电通道减少5.7亿元)。因此,最终选定在木渎变装设UPFC的方案。

苏州南部电网500 kV UPFC示范工程于2016年11月正式开工建设,2017年年底建成投运后,使电网潮流由自然分布转变为智能化灵活控制,在不新建输电通道的前提下,有效解决苏州南部500 kV电网发展中存在的问题,提升苏州南部电网输电能力和安全稳定水平,提高500 kV电网对特高压交直流电网的承接能力和支撑作用。同时,苏州南部电网500 kV UPFC示范工程建成后将成为世界上电压等级最高、容量最大的UPFC工程,将显著提高电网的整体科技含量,对柔性交流输电技术在更高电压等级的应用和推广,能起到很好的示范作用。

4 结语

苏州南部500 kV电网存在直流小方式下供电能力受限、无功支撑不足、直流换相失败风险大及直流双极闭锁后应急拉限电多等问题。对于上述问题,采用常规的线路增容、新增输电通道等方案实施难度较大,技术经济不合理。同时,苏州南部500 kV电网结构在规划期内保持稳定,其影响潮流分布的主要因素—锦苏直流运行方式的季节性变化长期存在。因此,苏州南部电网是应用UPFC等柔性输电技术比较理想的场合。考虑到该地区同时存在潮流控制及无功电压问题,最终决定应用具有潮流和无功电压综合调节能力的UPFC来解决上述问题。

在苏州南部500 kV电网中应用UPFC能够较好地解决苏州南部电网中存在的问题,与常规方案相比,具有较好的经济效益和社会效益。苏州南部电网500 kV UPFC示范工程对于苏州进一步拓展发展空间、节约土地资源、加强电网安全运行具有十分重要的意义。同时,苏州南部UPFC工程的建成投产对在更高电压等级应用UPFC具有示范作用,对柔性交流输电技术在更高电压等级的应用和推广具有积极的意义。

作者:杨林 , 蔡晖 , 汪惟源 , 宋鹏程 , 徐政 , 陈刚 , 窦飞

参考文献

[1]李国庆, 宋莉, 李筱婧. 计及FACTS装置的可用输电能力计算[J]. 中国电机工程学报, 2009, 29(19): 36-42.

LI Guoqing, SONG Li, LI Xiaojing. Available transfer capability calculation considering FACTS controllers[J]. Proceedings of the CSEE, 2009, 29(19): 36-42. DOI:10.3321/j.issn:0258-8013.2009.19.006 (1)

[2]饶成诚, 王海云, 吴寒, 等. UPFC提高异步风电机组故障穿越能力的分析[J]. 中国电力, 2013, 46(8): 35-39.

RAO Chengcheng, WANG Haiyun, WU Han, et al. Analysis on fault ride-through capability enhancement by UPFC for asynonous wind turbine generators[J]. Electric Power, 2013, 46(8): 35-39. (0)

[3]LARSSONM, REHTANZC. 基于最优潮流的广域FACTS控制提高输电能力[J]. 电力系统自动化, 2005, 29(16): 35-41.

LARSSON M, REHTANZ C. Increase of transfer capability through OPF-based wide area control of FACTS[J]. Automation of Electric Power Systems, 2005, 29(16): 35-41. DOI:10.3321/j.issn:1000-1026.2005.16.007 (0)

[4]赵渊, 杨晓嵩, 谢开贵. UPFC 对电网可靠性的灵敏度分析及优化配置[J]. 电力系统自动化, 2012, 36(1): 55-60.

ZHAO Yuan, YANG Xiaosong, XIE Kaigui. Parameter sensitivity and optimal allocation of UPFCs in bulk power systems reliability assessment[J]. Automation of Electric Power Systems, 2012, 36(1): 55-60. (0)

[5]张芳, 房大中, 陈家荣, 等. 阻尼联络线低频振荡的UPFC两阶段控制方法研究[J]. 中国电力, 2006, 39(11): 27-32.

ZHANG Fang, FANG Dazhong, CHEN Jiarong, et al. Study on two-stage control for Unified Power Flow Controller to damp tie-line low frequency oscillation[J]. Electric Power, 2006, 39(11): 27-32. DOI:10.3969/j.issn.1004-9649.2006.11.007 (0)

[6]NAMIN M H. Using UPFC in order to power flow control[C]//IEEE International Conference on Industrial Technology, Dec. 2006. (1)

[7]MEHRABAN A S, EDRIS A, SCHAUDER C D, et al. Installation, commissioning and operation of the world’s first UPFC on the AEP system[C]//International Conference on Power System Technology, Beijing, 1998. (1)

[8]KIM S Y, YOON J S, CHANG B H, et al. The operation experience of KEPCO UPFC[C]//International Conference on Electrical Machines and Systems, Nanjing, 2005. (0)

[9]FARDANESH B, SCHUFF A. Dynamic studies of the NYS transmission system with the Marcy CSC in the UPFC and IPFC configurations[C]//IEEE PES Transmission and Distribution Conference and Exposition, 2003. (0)

[10]国网江苏省电力公司. 统一潮流控制器工程实践—南京西环网统一潮流控制器示范工程[M]. 北京: 中国电力出版社, 2015: 38-41. (1)

[11]蔡晖, 祁万春, 黄俊辉, 等. 统一潮流控制器在南京西环网的应用[J]. 电力建设, 2015, 36(8): 73-78.

CAI Hui, QI Wanchun, HUANG Junhui, et al. Application of UPFC in Nanjing western power system[J]. Electric Power Construction, 2015, 36(8): 73-78. (1)

[12]凌峰, 李九虎, 田杰, 等. 适用于双回线路的统一潮流控制器系统结构优化分析[J]. 电力系统自动化, 2015, 39(21): 113-119.

LING Feng, LI Jiuhu, TIAN Jie, et al. Optimization analysis of UPFC system structure for double-circuit lines[J]. Automation of Electric Power Systems, 2015, 39(21): 113-119. DOI:10.7500/AEPS20141115002 (1)

[13]高强, 林烨, 黄立超, 等. 舟山多端柔性直流输电工程综述[J]. 电网与清洁能源, 2015, 31(2): 33-38.

GAO Qiang, LIN Ye, HUANG Lichao, et al. An overview of Zhoushan VSC-MTDC transmission project[J]. Power System and Clean Energy, 2015, 31(2): 33-38. (1)

[14]祁万春, 杨林, 宋鹏程, 等. 南京西环网UPFC示范工程系统级控制策略研究[J]. 电网技术, 2016, 40(1): 92-96.

QI Wanchun, YANG Lin, SONG Pengcheng, et al. UPFC system control strategy research in Nanjing Western Power Grid[J]. Power System Technology, 2016, 40(1): 92-96. (1)

[15]潘磊, 李继红, 田杰, 等. 统一潮流控制器的平滑启动和停运策略[J]. 电力系统自动化, 2015, 39(12): 159-164, 171.

PAN Lei, LI Jihong, TIAN Jie, et al. Smooth start and stop strategies for unified power flow controllers[J]. Automation of Electric Power Systems, 2015, 39(12): 159-164, 171. DOI:10.7500/AEPS20140621001 (0)

[16]鲁江, 秦健, 潘磊, 等. 南京UPFC工程控制保护系统架构与配置研究[J]. 江苏电机工程, 2015, 34(6): 1-5.

LU Jiang, QIN Jian, PAN Lei, et al. Study on architecture and configuration for control and protection system of Nanjing UPFC project[J]. Jiangsu Electrical Engineering, 2015, 34(6): 1-5. (1)

大云网官方微信售电那点事儿

责任编辑:电朵云

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞