世界能源领域前沿技术发展综述

2018-08-16 16:43:20 《能源情报研究》  点击量: 评论 (0)
随着新一轮工业革命兴起,应对气候变化达成全球共识,能源技术成为引领能源产业变革、实现创新驱动发展的源动力。

随着新一轮工业革命兴起,应对气候变化达成全球共识,能源技术成为引领能源产业变革、实现创新驱动发展的源动力。目前,世界主要国家和地区均把能源技术视为新一轮科技革命和产业革命的突破口,从能源战略的高度制定各种能源技术规划、采取行动加快能源科技创新,以增强国际竞争力。同时,能源技术开发的最新动态也预示着未来全球能源发展趋势。

一、1.欧盟:升级版战略能源技术计划开展研究与创新优先行动

早在上世纪70年代,欧盟的前身——欧共体委员会推出了《1977~1980年欧洲共同体科技政策指南》,标志着欧洲统一的科技研发合作战略形成。1983年,欧共体为协调成员国科技政策,搭建欧洲企业间合作平台,加强在高技术领域的商业竞争力,推出了第一个《技术研发框架计划》。进入21世纪,随着能源、环境问题的凸显,欧盟依托科技框架计划加强了能源技术研发,尤其是2007~2013年执行的欧盟第七科技框架计划(FP7)将能源列为独立的优先领域,目标就是要优化能源结构,提高能源效率,应对能源供应安全和气候变化,提高欧洲工业竞争力。

2008年,欧盟实施的《欧洲战略性能源技术规划》是欧盟指导能源技术发展的战略性文件,体现了当时欧盟对能源技术发展的新认识和新判断。2013年12月,欧盟出台了《Horizon2020研究创新计划(H2020)》。H2020是欧洲最大的研究创新计划,经费近800亿欧元,时间跨度从2014年到2020年,主要涉及生物技术、能源、环境与气候变化等领域。《H2020能源规划》是其中的重要组成部分,体现了欧盟对能源技术创新发展的最新认识和理念。

2014年新一届欧盟委员会上台后全面实施能源联盟战略,旨在全面提升欧洲能源体系抵御能源、气候及经济安全风险的能力。2015年9月,欧盟委员会公布了升级版的《欧盟战略能源技术计划》,这一计划改变以往单纯从技术维度来规划发展的方式,而是将能源系统视为一个整体来聚焦转型面临的若干关键挑战与目标,以应用为导向打造能源科技创新全价值链,围绕可再生能源、智能能源系统、能效和可持续交通四个核心优先领域以及碳捕集与封存和核能两个适用于部分成员国的特定领域,开展十大研究与创新优先行动,包括:开发高性能可再生能源技术及系统集成,降低可再生能源关键技术成本,开发智能房屋技术与服务,提高能源系统灵活性、安全性和智能化,开发和应用低能耗建筑新材料与技术。

2.美国:保持可再生能源产业和技术的世界领先地位

过去的十几年间,非常规油气生产技术的突破扭转了美国几十年本土油气产量下降的趋势。为了复苏美国经济、应对能源安全和气候变化,实现能源战略转型,推进美国能源独立进程,奥巴马政府自2009年上台后,便高举“能源独立”旗帜,出台一系列新能源政策和战略计划,掀起了一场自美国成立以来最大规模的能源革命。在推动美国能源革命进程当中,奥巴马政府从战略到战术层面有四大重点举措:首先,发布《未来能源安全蓝图》,明确美国未来20年的能源发展目标,强调通过安全有序地扩大国内油气资源生产、充分发挥清洁能源潜力和大力推动科技创新等工作来保障美国能源安全;其次,推行《全面能源战略》,变革美国能源体系,中心目标是开发和部署低碳技术,为清洁能源未来发展奠定基础,并在经济和国家安全方面带来显著效益;第三,出台清洁电力计划,全面推动燃煤电厂减排,扩大可再生能源发展,进一步促进美国电力乃至能源结构优化调整;第四,推动能源科技体制机制改革,降低能源创新全价值链成本。

此次革命提出基础科学与应用能源研发融合的战略指导思想,设立了三个能源研发平台和机构(先进能源研究计划署、能源前沿研究中心和能源创新中心),有效整合产学研各方资源,支持变革性能源技术开发,确保美国抢占新能源技术战略制高点。得益于奥巴马时期推出的各项能源战略,美国能源结构发生了显著变化,已成功由传统的能源进口大国转变为能源出口国。

2014年5月,美国总统行政办公室对外发布了《全方位能源战略——通向经济可持续增长之路》的报告。在能源技术领域,报告将发展低碳技术、为清洁能源未来发展奠基作为能源战略支点,在展望未来清洁发展目标时,特别强调美国要在可再生能源技术上取得领先。

2017年3月,以总统特朗普为首的新一届美国政府推出了《美国优先能源计划》。该计划延续了美国追求能源独立的基本思想,致力于降低能源成本,最大化利用国内能源资源,尤其是传统的化石燃料。新政府更倾向于传统能源,特朗普能源政策框架中,油气、煤炭等传统能源地位突出。但能源产业作为美国立国之本,保持可再生能源产业和技术的世界领先地位,仍是美政府的重要政策选择。

2017年6月,美国“能源周”期间,特朗普提出“能源主导”战略新思路,即将能源作为一种重要战略资源,扩大能源出口,在实现能源独立的同时谋求世界能源霸主的发展之路。未来,特朗普政府对美国能源技术发展趋势的政策引导和调节还有待观察。

3.日本:从“低碳化”迈向“脱碳化”实现能源转型

日本是能源消费大国,同时其传统能源的资源量十分有限。日本政府发布的能源与环境创新发展战略(NESTI2050)主要目标是推动低碳能源的发展,节能和减少温室气体排放的创新技术是日本能源技术优先发展的重要方向。

2010年6月,日本经济产业省发布以“保护环境和经济增长”为主题的《能源战略计划》,强调大力发展核能,构建以核电为主的低碳电源。随着世界经济发展和能源格局的变动,日本对本国的能源战略不断作出调整。在经过福岛核事故之后,日本在能源科技发展重点上有较大调整,于2014年修订了《能源战略计划》,以“3E+S”(能源安全保障、经济性、环境适宜性原则和安全)为能源政策基础,构筑“多层次、多样化的柔性能源供应结构”。指出未来发展方向是压缩核电发展,举政府之力加快发展可再生能源,以期创造新的产业。

2016年4月,日本相继公布了能源中期和长期战略方案:一份是经济产业省发布、面向2030年产业改革的《能源革新战略》,从政策改革和技术开发两方面推行新举措,确定了节能挖潜、扩大可再生能源和构建新型能源供给系统这三大改革主题,以实现能源结构优化升级,构建可再生能源与节能融合型新能源产业;另一份是日本政府综合科技创新会议发布、面向2050年技术前沿的《能源环境技术创新战略》,主旨是强化政府引导下的研发体制,通过创新引领世界,保证日本开发的颠覆性能源技术广泛普及,实现到2050年全球温室气体排放减半和构建新型能源系统的目标。技术创新战略确定了日本将要重点推进的五大技术创新领域,包括:利用大数据分析、人工智能、先进传感和物联网技术构建智能能源集成管理系统,通过创新制造工艺和先进材料开发实现深度节能,新一代蓄电池和氢能制备、储存与应用,新一代光伏发电和地热发电技术,以及二氧化碳固定与有效利用。

2017年12月,日本发布《氢能基本战略》,规划新能源汽车和氢能发展目标,加速推进氢能社会构建,实现能源供给多元化以提高能源自给率。

2018年7月3日,日本政府公布了最新制定的“第5次能源基本计划”,提出了日本能源转型战略的新目标、新路径和新方向,这是一份面向2030年以及2050年的日本能源中长期发展规划的政策指南和行动纲领。而此次制定能源政策的指导思想,则提出了“3E+S”升级版的新理念。在环保性方面,温室气体排放2030年要比2013年削减26%,到2050年则要削减80%,实现从“低碳化”迈向“脱碳化”的新目标。

4.德国:将可再生能源、能效、储能、电网技术作为战略优先推进领域

德国一贯坚持以可再生能源为主导的能源结构转型,经过多年的政策激励和研发支持,在可再生能源技术和装备制造方面的实力位居世界前列。福岛核事故后,德国政府率先提出了全面弃核的能源转型战略,把可再生能源和能效作为两大支柱,并以法律形式明确了可再生能源发展的中长期目标,到2050年可再生能源电力占比要达到80%。在科技层面为支持能源转型战略,2011年实施的第六次能源研究计划将可再生能源、能效、储能、电网技术作为战略优先推进领域。而为了从系统层面推动能源转型解决方案,德国联邦教研部于2016年4月公布了未来10年投资4亿欧元“哥白尼计划”的具体方案,这是德国为促进能源转型开展的最大规模的科研资助行动,来自德国230家学术界和产业界机构将参与其中,着重关注四大重点方向,每个方向均组建一个产学研联盟集成优势力量攻关,包括:新的智慧电网架构,转化储存可再生能源过剩电力,高效工业过程和技术以适应波动性电力供给,以及加强能源系统集成创新。

德国政府不仅重视可再生能源技术研发创新工作,还非常重视给予可再生能源发展坚实的法律制度保障,为此于2000年通过了著名的《可再生能源法》(EEG-2000)。随着德国可再生能源发展的情况变化,其对《可再生能源法》不断进行修订和完善。最新出台的《可再生能源法》2017版(EEG-2017)对先前法案内容进行了全面修订,主要包括:控制可再生能源年度装机容量增长目标,补贴重点侧重于更加经济有效的可再生能源类型(如陆上风电和光伏),实施上网电价递减率与年度新增装机容量挂钩的灵活限额机制,调整上网电价递减周期等等,采用招投标模式来确定可再生电力的补贴额度。这表明德国可再生能源的发展从过去的全面促进和吸引投资阶段转变到重点扶持、引导投资和成本控制新阶段。

5.俄罗斯:明确燃料动力综合体发展方向

《俄罗斯2035年前能源战略草案》和《俄罗斯联邦科技发展战略》中明确了俄罗斯燃料动力综合体的技术发展方向。俄罗斯燃料动力综合体一方面致力于提高传统能源的效率,另一方面努力打造新型能源,其中包括可再生能源、节能、分布式发电、智能电网等。这两个方面在《俄罗斯燃料动力综合体领域2035年前科技发展预测》中有详细的描述。当然,该科技发展预测最为重视的还是传统能源技术,毕竟,传统能源在俄罗斯经济中的地位举足轻重。

《俄罗斯燃料动力综合体领域2035年前科技发展预测》中预设了三种全球能源发展情景,即化石能源新型情景(原油需求增速加快),化石能源低价情景(原油需求增速放缓)和能源革命情景(向低碳能源转型)。在不同的预测情景下,俄罗斯对新型能源技术的需求也将有所不同。大多数新型能源技术(包括网络蓄电池、氢燃料电池、数字电网技术等)都出现在能源革命情景当中。该预测情景还对发展俄罗斯核电技术给予了特别的关注。与此同时也不难看出,俄罗斯燃料动力综合体对能源革命情景的技术准备程度并不充分。

6.法国:大力引进气候专家,用清洁能替代煤电

2015年,法国议会正式通过绿色增长能源转型法案,提出到2030年温室气体排放将比1990年降低40%,到2050年降低75%(同时能源消费减半),降低化石燃料占比,控制核电装机上限为63.2GW,可再生能源在能源结构中占比达到32%。这一法案被视为谋划法国能源战略转型的重大举措,旨在让该国更有效地应对气候变化,加强能源独立性,更好地平衡不同的能源供应来源。

2017年6月,在特朗普宣布美国退出《巴黎协定》几个小时后,法国总统马克龙便邀请心怀不满的美国科学家搬到法国:为每位科学家提供3至5年资助,总计150万欧元。在年底举办气候峰会期间,法国还公布了一份奖励名单,为18名获奖气候学家提供数以百万计的欧元,资助他们在法国从事研究。

除了加大引进人才力度外,马克龙计划未来5年内关闭法国所有燃煤电站,并停止发放碳氢化合物勘探许可证;维持目前的2030可再生能源目标,即清洁能源占比达32%;将减少安装可再生能源项目的审批程序,支持智能电网和储能;到2025年将核电占比降至50%,并关闭费斯内姆核电站。

7.英国:注重空气污染治理,明确淘汰煤电时间表

英国是最早提出“低碳经济”的国家,也是第一个实施“碳预算”的国家。早在2011年,英国政府就公布了《英国可再生能源路线图》,阐述了加快英国可再生能源部署和利用的全面行动计划,确定了到2020年可再生能源满足英国15%能源需求的发展目标。2017年10月,英国商业、能源和工业战略部(BEIS)发布《低碳发展战略》报告,阐述了英国如何在削减碳排放以应对气候变化的同时推动经济持续增长,为英国低碳经济发展描绘蓝图。2017年9月18日,英国首相特雷莎•梅宣布,英国将在2025年之前淘汰煤电,这是英国政府首次明确提出淘汰煤电的时间表。

2018年是英国《气候变化法案》生效以来的第10年,2018年6月28日,英国气候变化委员会发布题为《减少英国排放——2018年向议会提交的进展报告》的报告,评估了2017年英国的温室气体减排进展,总结英国过去10年应对气候变化的成就与经验。报告指出,英国政府必须吸取过去10年的教训,才能实现其2020年和2030年的法定减排目标。除非现在立即采取行动,否则公众将面临昂贵的低碳经济转型成本。

8.韩国:“去核电”成标志性重大调整

韩国新政府“去核电”政策成为近年来能源和产业政策标志性的重大调整,计划终止所有新的核电站建设计划,也不再批准延期运行现有核电站。政府还发表了核能五年计划,将核能技术的发展重点转到核电站安全运行和拆解技术等领域。本届总统任期期满前计划至少关闭10所老旧火电站,并将对煤电和核电征收环保税,以支持更加清洁的天然气以及水电和太阳能等可再生能源。

此外,韩国电力公社正式对软银的超级电网计划表示支持,认为该计划能够帮助东北亚国家分享能源供应,提升电力体系的安全性和运作效率。

9.其他主要国家:积极制定相应的低碳能源科技战略

新发展和新技术已经加快能源行业的转变速度,对气候变化的担忧成为向低碳经济转型的促进因素,推进绿色低碳技术创新、发展以可再生能源为主的现代能源体系已经成为国际社会的共识。除了上述主要国家和地区,世界其他国家也积极制定相应的低碳能源科技战略。

加拿大是北美主要海洋国家,拥有世界上最长的海岸线,蕴含丰富的海洋资源。2011年,加拿大发布了《加拿大海洋可再生能源技术路线图》,提出海洋能源发展的中长期阶段目标,以及实现目标的具体技术途径和促进条件,以保持加拿大在海洋能源领域的领先地位,为加拿大创造全新的经济增长点。

作为全球主要原油生产国,沙特阿拉伯在国家科学、技术和创新计划(Maarifah)中确定了国家技术长期发展方向,并将“能源”、“石油和天然气”、“油气化工”纳入到11项国家关键技术规划当中。沙特燃料动力综合体能源规划明确将能源作为国家经济增长的引擎,将能效技术、节能技术、减少对环境的负面影响(包括发展可再生能源)作为优先发展的技术方向。其中,石油和天然气规划、油气化工规划更是对所有技术环节进行了详细说明。沙特阿卜杜拉国王科技城(KACST)还为每项技术规划制定了五年期的实施计划。

巴西政府强调金砖国家在能源领域的互补性,目前巴西已成为中国十大原油供应国之一。同时,巴西认为金砖国家在低碳减排领域潜力巨大,在资金、技术领域共同关切很多。政府承诺在能效、可再生能源、林业、农业和工业等领域采取有效政策和措施,积极应对气候变化挑战,并计划在国家能源结构中增加可再生能源的比重。巴西力争到2019年生物能源年产量达到640亿升。水电开发潜力约2.59亿千瓦,发展空间巨大。

挪威是欧洲经济区的成员国,其能源技术优先发展方向与欧盟十分相似。挪威国家新能源技术研发、示范和商业化战略(Energi21)将新型可再生能源(太阳能发电和风力发电)、水电、能效、提高能源系统灵活性,以及碳捕集和存储(尤其是在燃气发电领域)技术作为重点。同时,挪威在欧洲境外拥有不少油气资源。因此,挪威能源技术发展必须要满足其大陆架开发的需求,并维护其油气生产商的利益。为了发展油气技术,挪威专门制定了21世纪油气战略,内容涵盖石油和天然气勘探、开采、加工、运输等各个环节,并将北极地区油气田的开发和环境保护作为重点。

二、1.核聚变研究取得重大突破

核聚变能源产生过程不污染环境、不产生放射性核废料、安全性高、清洁且资源无限,被视为人类可持续发展的最理想的新能源。而想要将核聚变的能量真正利用起来,就必须对核聚变的速度和规模进行控制,实现能量持续、输出平稳。为此,科学家正努力研究如何实现可控核聚变。美欧中核聚变实验装置持续创造纪录,稳步推进受控核聚变的实现。2016年3月,德国马普学会等离子体物理研究所建造的世界最大仿星器聚变装置W7-X成功产出首个氢等离子体,正式启动科学实验;10月,麻省理工学院Alcator C-Mod核聚变反应堆装置在最后一次实验中,等离子体压强首次突破2个大气压达到2.05个大气压,对应的温度达到3500万摄氏度;2017年7月,中国科学院等离子体物理研究所全超导托卡马克EAST实现了101.2秒稳态长脉冲高约束等离子体运行,创造了新的世界纪录,EAST成为了世界上第一个实现稳态高约束模式运行持续时间达到百秒量级的托卡马克核聚变实验装置。2017年11月,美国桑迪亚国家实验室开启氘—氚受控核聚变实验,标志着美核聚变研究进入全新阶段。

2.电化学储能成为电网应用储能技术解决新能源接入的首选方案

2016年5月,斯坦福大学William C. Chueh教授课题组牵头的联合研究团队设计了一种全新的“同步液态扫描透射X射线显微成像(STXM)”技术,借助该技术研究人员首次在介观尺度实现对锂离子电池充放电过程中单个纳米颗粒活动行为的原位实时观测和成像;2017年2月,劳伦斯伯克利国家实验室利用集成X射线谱的全场透射显微成像技术(FF-TXM-XANES)首次在纳米尺度实现对锂离子电池充放电循环过程中锂锰镍氧(LiMn1.5Ni0.5O4,LMNO)正极材料相变过程的详细观测研究,揭露了脱锂过程中LMNO电极相转变机制;5月,瑞士保罗谢尔研究所研究团队利用X射线技术首次实现对锂硫电池放电中间产物的直接观测,对锂硫电池反应机理有了进一步的深入认识,为设计和开发高性能锂硫电池提供了重要的科学理论参考。

3.钙钛矿太阳电池技术新成果层出不穷

钙钛矿太阳能电池由敏化太阳能电池改进发展而来,具备更加清洁、便于应用、制造成本低和效率高等显著优点。韩国科学家通过改进钙钛矿太阳能电池金属卤化物吸光材料的制造方法,使这种类型太阳能电池的能量转化效率达到22.1%,而此前这类电池转化效率的最高纪录是20.1%。瑞士洛桑联邦理工学院研发出新型钙钛矿太阳电池的转换效率达到21.02%,创造新的世界纪录。斯坦福大学、麻省理工学院、英国牛津大学、德国亥姆霍兹柏林材料与能源中心、瑞士联邦材料科学与技术研究所均报道了钙钛矿与硅电池或铜铟镓硒电池构建叠层电池的研究成果,通过带隙匹配提高太阳光谱的吸收利用率,期望实现30%的转换效率。针对新一代太阳能电池“钙钛矿太阳电池”材料,东京大学先端科学技术研究中心的科研人员,通过添加地球上较多存在的钾元素,实现了结晶构造的稳定性,在不使用铷等稀有金属的前提下,实现了20.5%的高转换效率。此外,韩国淑明女子大学化工生命工学部的崔京民教授和朴民宇教授的研究团队采用低温工艺开发出高效柔性光伏电池。此项研究利用了钛基金属有机骨架材料,开发出的钙钛矿型柔性光伏电池具有新型的金属氧化物电子传输层。

4.3D打印燃气轮机叶片获突破

增材制造技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自上而下”材料累加的制造方法,也被称为“3D打印技术”。国际上增材制造经过20多年的发展,美国已经成为增材制造领先的国家,3D打印技术不断融入人们的生活,在能源、医疗、建筑、教育等领域大量应用,催生许多新的产业。

2017年世界柴油机巨头曼柴油机与透平公司正在将通过增材制造(3D打印)的零件装配在燃气轮机中,而这个零件是燃气轮机上结构复杂的涡轮静叶(喷嘴),这是全世界首例将如此复杂的3D打印零件用在燃气轮机批产中。美国通用电气(GE)公司宣布其最大的燃气轮机9HA.02可以以64%的效能运行,打破了能源行业的记录,其中最大的功劳应归于3D打印,GE用3D打印为涡轮机制造了多个部件。

2017年2月,西门子公司成功完成对3D打印燃气轮机叶片的满负荷测试,这些发电用的燃气轮机叶片是由英国的MaterialsSolutions公司通过3D打印生产的,其燃气轮机转速高达每分钟13,000转,工作温度超过1250摄氏度(2282华氏度),叶片被安装在功率为13兆瓦(MW)的西门子SGT-400工业燃气轮机上。

5.电动汽车电池续航技术大幅提升

电池充电及续航技术成为多国研发热点,其技术突破将推动电动汽车产业加速发展。以色列Storedot公司研发出“超快速充电”电动汽车电池,可在5分钟内完成充电,并支持汽车续航约483千米德国弗劳恩霍夫应用研究促进协会研制出一种超级电池,体积不变,可使电动汽车续航达100千米。美国菲斯克公司研发的固态电池可使电动汽车续航804千米,充电仅需1分钟。韩国光州科学技术院和美国麻省理工学院合作研发出使电动车续航能力提高1倍的新型锂电池。

6.氢燃料制取技术取得新进展

氢能源是目前备受期待的新一代能源。进入21世纪以来,氢能源的开发利用逐步增多,发达国家已经取得了一些新进展。其中,日本氢能源研究启动早、发展快,在燃料电池和燃料电池车领域成绩斐然,成为引领“终极环保车”的时代先锋。从氢能与氢燃料电池全球发展的总体来看,欧美日等发达国家继续加大研发投入和政策扶持,氢能与氢燃料电池在交通领域、固定式发电领域、通信基站备用电源领域和物料搬运领域都显示出市场化的迹象,氢燃料电池技术应用总体已经在商业化初期崭露头角。

日本九州大学发明了近红外线领域的太阳能制造氢气的新方法。氢被认为是下一代主要能源,利用太阳能用水制造氢气的方法最被看好。和以前利用光电效应使物质表面放出电子的研究方法不同,该研究利用了光驱动化学反应原理。德国科学家简化了氢燃料制取和储存的新工艺,将应用于工业化储氢和生产,降低成本和能源消耗,对能源转型具有重要意义。来自埃克塞特大学的可再生能源专家团队率先推出了一项新型光电极技术,利用太阳光生产氢气,从而创造出清洁、廉价的燃料,可以为家庭和燃料电池车辆等提供能源。通过这种光解水的方法产生的氢燃料不仅会显著降低碳排放,而且几乎可以实现无限能源供应。

 

大云网官方微信售电那点事儿

责任编辑:继电保护

免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞